[发明专利]一种基于复杂场景下的人体关键点检测系统及方法有效

专利信息
申请号: 201810582712.7 申请日: 2018-06-05
公开(公告)号: CN108710868B 公开(公告)日: 2020-09-04
发明(设计)人: 宫法明;马玉辉;徐燕;袁向兵;宫文娟;李昕;李传涛;丁洪金 申请(专利权)人: 中国石油大学(华东)
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06K9/46;H04N7/18
代理公司: 北京众合诚成知识产权代理有限公司 11246 代理人: 夏艳
地址: 266580 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 复杂 场景 人体 关键 检测 系统 方法
【说明书】:

发明公开了一种基于复杂场景下的人体关键点检测系统及方法,该方法包含:输入监控视频信息,得到单帧静态图和多帧光流图;对单帧静态图通过卷积操作提取特征以得到特征图,为解决复杂场景下干扰目标对人员目标检测的影响,采用人员目标检测算法,以对特征图的实际置信度与预设置信度进行判别,得到离散化人员目标包围盒;对多帧光流图采用光流堆叠来形成二维矢量场;提取离散化人员目标包围盒中特征,得到特征图,获得部位的关键点和关联程度,利用预测器为人体每个部位生成部位置信图,通过部位置信图和二维矢量场实现人体关键点的精准检测。本发明的系统及方法用于复杂场景下的人体关键点检测,实现人员目标关键点的精准检测。

技术领域

本发明涉及一种人体关键点检测技术,具体涉及一种基于复杂场景下的人体关键点检测系统及方法。

背景技术

目前,我国的“天网”工程建设已初具规模,随着深度学习和智能视频行为分析等先进技术的发展成熟,如何有效地利用监控视频成为视频数据分析的重点。

计算机视频监控是利用计算机视觉和图像处理的方法对图像序列进行目标检测、目标分类、目标跟踪以及对监视场景中人员目标的行为识别。其中,人体行为识别是近年来被广泛关注的研究热点,而人体关键点检测则是智能视频行为识别的基础,也是核心的关键技术。通过人体关键点序列对目标行为进行分析和研判,实现安全隐患的主动发现、公共场所异常事件的预警,在油田、医院和敬老院等场所具有重要的实际应用价值。

人体关键点检测是对图像中人员目标的关键部位进行识别和定位,随着深度卷积神经网络的推广,这一问题得到进一步解决。人体关键点检测的方法主要分为两类:自上而下的方法和自下而上的方法。其中,自上而下的方法是指先检测到人员目标,然后使用目标包围盒进行定位,最后使用单人估计的方法定位人体的所有关节;自下而上的方法是指先定位到所有关节的位置,然后再区分关节的从属目标,最后将关节组装成一个完整的人体姿态。前者适用于人员目标稀疏的情况,后者适用于人员目标密集的情况。

传统的人体关键点检测方法包括基于模板匹配的方法、基于统计分类的方法和基于滑动窗口检测的方法。基于模板匹配的方法直观、简单,但是缺乏鲁棒性,一般用于单一场景中;概率统计的方法应用广泛,但却需要大量的训练数据来学习模型参数,计算较为复杂;基于滑动窗口的方法对训练数据库的标注要求较低,但却无法克服部分遮挡的影响以及构建人体各部位之间的相对位置关系。

综上所述,由于人体的非刚性特点、姿态的多变性及光照变化等影响,传统方法在单一特定场景下效果较突出,但是在复杂场景中受背景变化的影响比较大,人体部位易受其他物体目标的遮挡和干扰,难以保证人体关键点检测的准确性和完整性。

发明内容

本发明的目的是提供一种基于复杂场景下的人体关键点检测系统及方法,该系统及方法解决了现有技术对复杂场景中人体关键点检测效果差且误差大的问题,能够用于复杂场景下的人体关键点检测,对动态场景中人员目标进行定位、识别和跟踪,实现图像中所有人员目标关键点的精准检测。

为了达到上述目的,本发明提供了一种基于复杂场景下的人体关键点检测方法,该方法包含:

(S100)输入监控视频信息,进行预处理得到单帧静态图和多帧光流图;

(S200)对单帧静态图通过卷积操作提取特征以得到特征图,为解决复杂场景下干扰目标对人员目标检测的影响,采用人员目标检测算法,以对特征图的实际置信度与预设置信度进行判别,去除非人员目标,得到离散化人员目标包围盒;

(S300)对多帧光流图采用光流堆叠来形成二维矢量场;

(S400)提取所述的离散化人员目标包围盒中特征,得到特征图,获得部位的关键点和关联程度,利用预测器为人体每个部位生成部位置信图,通过部位置信图和二维矢量场实现人体关键点的精准检测。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东),未经中国石油大学(华东)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810582712.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top