[发明专利]一种基于逆投影图的夜间车辆检测与计数方法有效
| 申请号: | 201610127448.9 | 申请日: | 2016-03-07 |
| 公开(公告)号: | CN105718923B | 公开(公告)日: | 2019-02-12 |
| 发明(设计)人: | 崔华;王菽裕;宋翔宇;孙士杰;肖启恒;王璇 | 申请(专利权)人: | 长安大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06T7/254;G06T7/50;G06K9/62;G08G1/017;G08G1/065 |
| 代理公司: | 西安恒泰知识产权代理事务所 61216 | 代理人: | 李婷 |
| 地址: | 710064 陕西省*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 投影图 夜间 车辆 检测 计数 方法 | ||
1.一种基于逆投影图的夜间车辆检测与计数方法,其特征在于,包括以下步骤:
步骤一,采用路面监控摄像头拍摄路面图像,获取路面的多帧视频图像,设置三维逆投影检测面,将视频图像显示在三维逆投影检测面上,采用数据重构恢复出三维逆投影检测面上的每一帧图像的逆投影图;
步骤二,对每一帧图像的逆投影图进行背景提取,得到每一帧图像的背景图像;
步骤三,对每一帧图像的逆投影图进行前景提取,得到每一帧图像的前景图像,当前景图像中包含有多个代表车辆可疑车灯目标的目标亮块即连通域时,执行步骤四,否则,不执行任何操作;
步骤四,对每一帧图像的前景图像中的各个连通域进行标记;
步骤五,对同一帧图像中的连通域进行粗匹配,每一帧图像中均得到多个车灯对;
步骤六,对步骤五中得到的所有车灯对进行细匹配,得到多个目标车灯对,确定目标车灯对所在的前景图像为第N帧~N+m帧;所述细匹配的实现方式包括以下步骤:
在逆投影图上求得车灯对的x方向距离差X,y方向距离差Y,以及车灯对中两个车灯的平均高度H;若计算结果满足100<X<260、Y<15且20<H<120,则该车灯对可进一步确定为当前图像中的一个目标车灯对,记录当前图像中的该目标车灯对,匹配次数为1;若车灯对不满足上述阈值条件,则该车灯对不是目标车灯对;按照上述方法,得到当前图像中的多个目标车灯对;
步骤七,建立高斯混合模型;
步骤八,将第N帧~N+m帧图像中属于同一车辆的目标车灯对组成一个目标车灯对组,并确定各个目标车灯对组的匹配次数;确定每个目标车灯对组中最接近于所设置的三维逆投影检测面的目标车灯对;若目标车灯对组的匹配次数大于阈值M,则该目标车灯对组中最接近于所设置的三维逆投影检测面的目标车灯对即为检测到的夜间车辆目标;最终检测到S个夜间车辆目标,则车辆计数增加S;返回步骤一。
2.如权利要求1所述的基于逆投影图的夜间车辆检测与计数方法,其特征在于,所述的步骤五中的粗匹配的实现方式包括以下步骤:
分别求取每一帧图像的前景图像中的各个连通域的三维周长,面积和圆形度;若连通域的面积小于A,则将该目标剔除,计算同一帧图像中面积大于A的连通域中任意两个连通域的周长比TC_R,面积比TA_R和圆形度比TS_R,若0.65<TC_R<1.60、0.3<TA_R<3且0.65<TS_R<1.60,则这两个连通域对应的可疑车灯粗匹配为同一车辆的车灯对。
3.如权利要求1所述基于逆投影图的夜间车辆检测与计数方法,其特征在于,所述步骤八中的将第N帧~N+m帧图像中属于同一车辆的目标车灯对组成一个目标车灯对组,并确定各个目标车灯对组的匹配次数,其实现方式包括:
在步骤五中第N帧~N+m帧图像中,从相邻的两帧图像中分别选取一个目标车灯对,计算得到XF和YF,若满足XF<20且HF<40,则选取的两个目标车灯对为同一车辆的目标车灯对,该目标车灯对的匹配次数增加1;若计算得到的XF和YF不满足XF<20且HF<40,则选取的两个目标车灯对不是同一车辆的目标车灯对;属于同一车辆的目标车灯对组成一个目标车灯对组,最最终得到j组分别属于不同车辆的目标车灯对组,各个目标车灯对组的最终匹配次数为M1…Mj。
4.如权利要求3所述基于逆投影图的夜间车辆检测与计数方法,其特征在于,所述步骤八中的确定每个目标车灯对组中最接近于所设置的三维逆投影检测面的目标车灯对,其实现方式包括:
计算每个目标车灯对组中的各个目标车灯对在高斯混合模型中的概率大小,即将目标车灯对中的两个车灯的x方向距离差X和两个车灯的平均高度H均代入上述高斯混合模型中,得到概率;选取概率大小中的最大值对应的目标车灯对,该目标车灯对即为该车辆最接近于当前三维逆投影检测面的目标车灯对。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长安大学,未经长安大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610127448.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种基于低秩稀疏编码技术的害虫图像特征学习与识别方法
- 下一篇:滑板车





