[发明专利]基于多元信息数据的公交到站时间预测方法及系统有效

专利信息
申请号: 201410282998.9 申请日: 2014-06-23
公开(公告)号: CN104064028A 公开(公告)日: 2014-09-24
发明(设计)人: 钱小鸿;滕靖;徐建军;陈思锦;张书浆;金威敏 申请(专利权)人: 银江股份有限公司;同济大学
主分类号: G08G1/01 分类号: G08G1/01
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310012 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 多元 信息 数据 公交 到站 时间 预测 方法 系统
【说明书】:

技术领域

发明属于智能交通技术领域,涉及一种公交到站时间预测方法及系统。

背景技术

我国诸多大中城市提出“公交都市”概念,通过打造绿色的公交都市来缓解日益增长的机动车出行需求及严重的交通拥堵问题。“公交都市”通过引入ITS技术,逐步实现公交运营与调度、公交出行的智能化、数字化、网络化以及集成化。国内外大城市发展经验表明,要解决城市交通问题,尤其是特大型城市的交通问题,必须充分发挥公共交通的重要作用。公交(以下公交指公共汽、电车交通)到站时间服务是提高公众交通吸引力的关键服务之一。精确的公交车到站时间预测信息可以减少乘客的候车时间,乘客可以有效地安排出行计划。同时,公交行驶时间是优化运营计划的一个关键因素。为了维持公交运营的服务质量,公交企业通常根据车辆的实时情况采取适当的措施来调整运行时刻表和发车间隔,从而更有效地进行运营管理,提高公交服务水平。因此,研究公交行程时间的预测(等效于到站时间预测),无论是对运营者还是出行者都有很大的意义。

随着智能交通运输系统的不断发展,以及智慧城市等概念的出现,城市道路交通数据采集方式已经从传统的单点检测发展为多点检测,使得以往离散空间、离散时间的静态检测数据,发展为连续空间、连续时间的动态轨迹数据,如浮动车数据,不仅仅本线路公交车作为浮动车,通行于相同路段的多条公交线路车辆均可作为浮动车。这就为交通流运行特征的提取,提供了技术支持,也有助于城市公交行驶时间的预测技术的改进。

此外,我国大城市中心区内,客流量较大且各车站客流分布不均衡,都使用相同的停站时间参数(国内较多应用都沿袭原来国外模型做法,停站时间因为与行驶时间相比太小所以就简化为单一参数)将一定影响行程时间预测精度,累积下来会产生较大的预测误差。同时公交车辆在运行过程中受到道路通行条件影响比较剧烈,车辆在站间行驶时间随机性强,国内仅使用车辆行驶时间的历史统计数据,不能反映实时的交通状况变化。可见,传统的基于单条公交线路GPS历史数据的预测技术在信息的时效性和信息的准确性两方面存在一定的不足。

经过现有技术文献检索发现,基于多元信息数据的公交到站时间预测技术未见公开报道。

发明内容

为了克服已有公交到站预测方式的时效性较差、准确性较低的不足,本发明提供了一种时效性良好、准确性较高的基于多元信息数据的公交到站时间预测方法及系统。

为了解决上述技术问题提出了以下技术方案:

一种基于多元信息数据的公交到站时间预测方法,所述预测方法包括以下步骤:

1)对获取的多元信息数据进行预处理,形成历史数据库,所述多元信息数据包括预测线路的公交车辆GPS数据、通行路段其它线路公交车辆的GPS数据和公交车IC卡信息,数据处理后得到的信息包括:线路编号、车牌编号、车辆运行位置、车速、所在站间区间、车辆在各车站到达时刻、离开时刻、上车人数和下车人数;

2)建立模型预测公交车辆的站-站间行驶时间;

2.1)当公交线路集合所包含的公交车辆数目k,即k<N时,N为公交线路集合所包含的公交车辆数目的最小阈值,基于公交运行线路中相邻两个站点间的行程时间的历史数据统计回归,来得到预测的路段行程时间,通过以下公式实现:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于银江股份有限公司;同济大学,未经银江股份有限公司;同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410282998.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top