[发明专利]一种特征抽取方法和装置有效

专利信息
申请号: 201410013846.9 申请日: 2014-01-13
公开(公告)号: CN103700011B 公开(公告)日: 2016-11-23
发明(设计)人: 罗辛;夏云霓;陈鹏;吴磊 申请(专利权)人: 重庆大学;成都国科海博信息技术股份有限公司
主分类号: G06Q30/02 分类号: G06Q30/02;G06F17/30
代理公司: 成都行之专利代理事务所(普通合伙) 51220 代理人: 梁田
地址: 404100 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 特征 抽取 方法 装置
【说明书】:

技术领域

发明涉及计算机数据处理领域,尤其涉及大数据环境中特征抽取方法和装置。

背景技术

现代大型信息系统,尤其是运营较为成功的商业系统,如大型电子商务系统、搜索系统、社会网络服务系统,其用户数量和信息数量十分巨大。在此类系统中,用户的各种客观历史行为,如点击、浏览、评论、搜索等等,随着系统运营时间的积累,会汇集成为庞大的用户历史行为数据集,数据量至少在TB量级,形成典型的大数据环境。在此类环境中,一种典型的数据描述方式是使用用户-项目历史行为统计矩阵,该矩阵中的每一行对应于一个特定用户;每一列对应于一个特定项目,其中项目指系统中任何可能由用户操作的客观物体,如新闻、图片、商品等等;每一个矩阵元素对应于一个特定用户对一个特定项目的历史行为量化数据,该数据是使用该特定用户对该特定项目的客观历史行为数据,利用符合自然规律的数学统计模型进行量化计算构成。大型商业系统中,用户和项目数量十分巨大,因此,其对应的用户-项目历史行为统计矩阵也是十分巨大的。同时,在通常情况下,一个用户不可能穷尽浏览所有的项目,一个项目也不可能被所有的用户点击;因此,一般而言,用户-项目历史行为统计矩阵中的已知数据往往远远少于未知数据,即,用户-项目历史行为统计矩阵是极端稀疏的。

在信息系统运营过程中,基于用户-项目历史行为统计矩阵中的已知数据,从中抽取用户行为特征,可以对用户的行为规律进行有效的分析,从而为系统在运营过程中的信息组织和营销策略的制订提供重要的依据。在用户行为特征的抽取过程中,如何保持用户行为特征的非负性,是一个关键问题。这是因为非负的用户特征更加符合信息系统中用户行为的自然规律,能够更好地对用户行为进行表征。

非负特征抽取多用于计算机视觉领域,其基本特点是对于给定的图形或者图像,将其视为一个满秩矩阵,并对其进行非负条件限制下的矩阵因式分解,从而抽取出该图形或图像的局部物体特征。但是,信息系统中的非负用户行为提取问题,与计算机视觉中的非负物体特征抽取问题,具备很大的区别。这是因为计算机视觉中的非负物体特征抽取所处理的图形、图像所转化的矩阵是满秩矩阵,且不具备缺失值,此类矩阵的非负矩阵因式分解问题可以借助常规的矩阵迭代运算进行处理;而信息系统中的非负用户行为抽取问题,所处理的用户-项目历史行为统计矩阵,通常情况下是极端稀疏的,其中具备大量的缺失值,无法使用传统的矩阵迭代运算进行处理。因此,如何针对大型信息系统中的、具备大量缺失值的用户-项目历史行为统计矩阵,进行非负条件限制下的矩阵因式分解,抽取出能够保证对已知数据的良好还原性和非负性,能够良好地表征用户行为规律的用户行为特征,是对现代大型信息系统所产生的海量数据进行分析所需要处理的一个关键问题。

综上所述,本申请发明人在实现本申请实施例中发明技术方案的过程中,发现上述技术至少存在如下技术问题:

在现有技术中,由于现在现有的信息系统中进行非负用户行为抽取时,所处理的用户-项目历史行为统计矩阵,通常情况下是极端稀疏的,其中具备大量的缺失值,无法使用传统的矩阵迭代运算进行处理,所以,现有技术存在不能抽取出能够保证对已知数据的良好还原性和非负性,不能够良好地表征用户行为规律的用户行为特征的技术问题,进而不能对用户的行为规律进行有效的分析,从而不能为系统在运营过程中的信息组织和营销策略的制订提供重要的依据。

发明内容

本申请实施例通过提供一种特征抽取方法和装置,解决了现有技术中存在不能抽取出能够保证对已知数据的良好还原性和非负性,不能够良好地表征用户行为规律的用户行为特征的技术问题,实现了能抽取出能够保证对已知数据的良好还原性和非负性,能够良好地表征用户行为规律的用户行为特征的技术效果。

为解决上述技术问题,本申请实施例一方面提供了一种特征抽取方法,应用于一电子设备中,所述方法包括:

所述电子设备接收来自服务器所采集的用户-项目历史行为统计数据;

将所述统计数据存储在存储模块中;

对所述用户-项目历史行为统计数据进行非负用户行为特征抽取,获得特征抽取数据;

将所述特征抽取数据存储在所述存储模块中。

其中,所述对所述统计数据进行特征抽取,具体为:对所述统计数据进行处理稀疏矩阵的非负用户特征抽取。

进一步地,所述对所述统计数据进行特征抽取,获得特征抽取数据,具体包括:

首先,对特征抽取过程所需要的参数进行初始化获得第一参数;

然后,基于所述统计数据和所述第一参数,训练构造特征数据;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学;成都国科海博信息技术股份有限公司,未经重庆大学;成都国科海博信息技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201410013846.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top