[发明专利]一种保持边缘的自适应图像滤波方法有效
| 申请号: | 200610043000.5 | 申请日: | 2006-06-20 |
| 公开(公告)号: | CN101094312A | 公开(公告)日: | 2007-12-26 |
| 发明(设计)人: | 王红梅;李言俊;张科 | 申请(专利权)人: | 西北工业大学 |
| 主分类号: | H04N5/21 | 分类号: | H04N5/21;H04N5/213 |
| 代理公司: | 西北工业大学专利中心 | 代理人: | 王鲜凯 |
| 地址: | 710072陕*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 保持 边缘 自适应 图像 滤波 方法 | ||
技术领域
本发明涉及一种保持边缘的自适应图像滤波方法,属于图像处理技术领域,具体涉及一种混合噪声图像滤波方法。
背景技术
在数字图像的获取和传输过程中,传感器或传输通道经常会产生噪声。噪声的存在极大地降低了图像的质量,使得后期的处理如图像分割、特征提取和目标识别等变得困难,因此对噪声图像进行滤波就成为一项非常重要的工作。在各种形式的噪声中,椒盐噪声和高斯噪声是最常见的两种,因而也得到了更多人的关注。
对于椒盐噪声的去除,比较常见的方法是非线性的中值滤波。由于中值滤波法对所有的像素都采用相同的窗口进行处理,因而去噪结果无法保持边缘等细节信息。目前,由噪声检测和噪声滤波两个阶段组成的椒盐噪声图像滤波方法逐渐得到了人们的重视,实验也证明了这种方法的有效性。邢藏菊提出的极值中值滤波就是由噪声检测和噪声滤波两个阶段组成的,其噪声检测过程为:如果某个像素的灰度值是以它为邻域的区域内的最大值或最小值,则该像素被认为受到了椒盐噪声的污染,否则认为未受到噪声污染;T.Chen提出了一种由噪声检测和噪声滤波组成的“三态”中值滤波算法,该方法同样是先对噪声图像的像素判断其受污染情况,然后根据判断结果确定滤波图像的像素灰度值:保持原灰度值不变、取中值滤波的结果或者是取中心加权中值滤波结果。
传统的图像高斯噪声滤波方法是平均法,但是平均法会消除图像的细节信息,降低去噪图像的分辨率。近年来,基于小波变换的图像去噪方法成为人们研究的热点内容。D.L.Donoho和I.M.Johnstone提出了基于下采样正交小波的阈值收缩法及其全局阈值,其阈值收缩法又分为硬阈值收缩和软阈值收缩。我们知道,下采样正交小波变换是平移可变的,即当图像信号发生平移时,其对应的小波变换系数不是被平移,而是被改变,从而导致去噪图像出现振铃现象。因此,人们提出了一些改进的小波图像去噪方法,如高清维等提出的基于平稳小波变换的图像去噪方法:首先对噪声图像进行平稳小波分解,然后对分解后的高频分量进行软阈值收缩,最后进行平稳小波重构得到去噪结果。该方法虽然克服了传统下采样正交小波变换存在的振铃现象,但是由于对高频分量的所有像素都使用固定的阈值进行处理,故而去噪图像的边缘不能得到较好的保持。Lin Peng等提出了一种基于小波变换的自适应阈值的收缩方法,该方法依据噪声图像的标准差,以及小波域噪声分布和空间域噪声分布之间的线性关系来确定每一尺度下的阈值。虽然该方法对不同尺度的高频分量使用了不同的阈值,但是对某一尺度下的所有像素都进行了无条件的收缩处理,而且使用统一的阈值,因而在一定程度上也会丢失图像的细节信息。
我们知道,椒盐噪声和脉冲噪声有时会同时出现在一幅图像中。在这种情况下,就需要图像滤波算法对这两种噪声都能很好的处理,而现有算法大都考虑的是去除一种类型的噪声。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种保持边缘的自适应图像滤波方法,是一种能够同时去除高斯噪声和椒盐噪声的自适应图像滤波方法。
技术方案
本发明的技术特征在于:具体步骤如下,
a)使用极值法检测噪声图像中被椒盐噪声所污染的像素;
b)对被污染的像素使用自适应滤波法修正其灰度值,而未受噪声污染的像素则保持其灰度值不变,由此得到去除椒盐噪声后的图像;
c)对经过椒盐噪声滤波的图像进行平稳小波分解,得到相应的低频分量和不同频带、不同方向的高频分量,它们的大小和原始噪声图像的大小相同;
d)由于小波分解后的低频分量已经比较平滑,故保持其系数值不变;对于高频分量中的噪声和边缘,虽然它们都是高频信息,但是却表现出不同的特性,即边缘在不同尺度的对应位置上具有较强的相关性,而噪声的相关性则很弱,故而可利用这一特性将高频分量中的像素标记为边缘或噪声;
e)如果高频分量的某一像素被标记为边缘,则保持其系数值不变;如果被标记为噪声,则使用自适应邻域法进行小波系数的收缩;
f)当噪声强度较大时,用上述步骤5收缩后最小尺度的高频分量中会出现一些孤立的亮点和暗点,但是次小尺度(最小尺度的上一层)高频分量中的噪声已经被去除,故借助次小尺度的高频分量将这些孤立点去除;
g)对经过上述处理的高频分量和低频分量进行平稳小波重构得到滤波图像。
有益效果
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200610043000.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:超薄型CCM封装结构及其封装方法
- 下一篇:一种可调温隔板
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序





